
python-rocksdb Documentation
Release 0.6.7

sh

Apr 29, 2019

Contents

1 Overview 1
1.1 Installing . 1
1.2 Basic Usage of python-rocksdb . 2
1.3 Python driver for RocksDB . 9
1.4 Changelog . 37

2 Contributing 41

3 RoadMap/TODO 43

4 Indices and tables 45

Python Module Index 47

i

ii

CHAPTER 1

Overview

Python bindings to the C++ interface of http://rocksdb.org/ using cython:

import rocksdb
db = rocksdb.DB("test.db", rocksdb.Options(create_if_missing=True))
db.put(b"a", b"b")
print db.get(b"a")

Tested with python2.7 and python3.4 and RocksDB version 5.3.0

1.1 Installing

1.1.1 With distro package and pypi

This requires librocksdb-dev>=5.0

apt-get install python-virtualenv python-dev librocksdb-dev
virtualenv venv
source venv/bin/activate
pip install python-rocksdb

1.1.2 From source

Building rocksdb

Briefly describes how to build rocksdb under an ordinary debian/ubuntu. For more details consider https://github.com/
facebook/rocksdb/blob/master/INSTALL.md

apt-get install build-essential libsnappy-dev zlib1g-dev libbz2-dev libgflags-dev
git clone https://github.com/facebook/rocksdb.git

(continues on next page)

1

http://rocksdb.org/
https://github.com/facebook/rocksdb/blob/master/INSTALL.md
https://github.com/facebook/rocksdb/blob/master/INSTALL.md

python-rocksdb Documentation, Release 0.6.7

(continued from previous page)

cd rocksdb
mkdir build && cd build
cmake ..
make

Systemwide rocksdb

The following command installs the shared library in /usr/lib/ and the header files in /usr/include/
rocksdb/:

make install-shared INSTALL_PATH=/usr

To uninstall use:

make uninstall INSTALL_PATH=/usr

Local rocksdb

If you don’t like the system wide installation, or you don’t have the permissions, it is possible to set the following
environment variables. These varialbes are picked up by the compiler, linker and loader

export CPLUS_INCLUDE_PATH=${CPLUS_INCLUDE_PATH}:`pwd`/../include
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:`pwd`
export LIBRARY_PATH=${LIBRARY_PATH}:`pwd`

Building python-rocksdb

apt-get install python-virtualenv python-dev
virtualenv venv
source venv/bin/activate
pip install git+git://github.com/twmht/python-rocksdb.git#egg=python-rocksdb

1.2 Basic Usage of python-rocksdb

1.2.1 Open

The most basic open call is

import rocksdb

db = rocksdb.DB("test.db", rocksdb.Options(create_if_missing=True))

A more production ready open can look like this

import rocksdb

opts = rocksdb.Options()
opts.create_if_missing = True

(continues on next page)

2 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

(continued from previous page)

opts.max_open_files = 300000
opts.write_buffer_size = 67108864
opts.max_write_buffer_number = 3
opts.target_file_size_base = 67108864

opts.table_factory = rocksdb.BlockBasedTableFactory(
filter_policy=rocksdb.BloomFilterPolicy(10),
block_cache=rocksdb.LRUCache(2 * (1024 ** 3)),
block_cache_compressed=rocksdb.LRUCache(500 * (1024 ** 2)))

db = rocksdb.DB("test.db", opts)

It assings a cache of 2.5G, uses a bloom filter for faster lookups and keeps more data (64 MB) in memory before
writting a .sst file.

1.2.2 About Bytes And Unicode

RocksDB stores all data as uninterpreted byte strings. pyrocksdb behaves the same and uses nearly everywhere byte
strings too. In python2 this is the str type. In python3 the bytes type. Since the default string type for string literals
differs between python 2 and 3, it is strongly recommended to use an explicit b prefix for all byte string literals in both
python2 and python3 code. For example b'this is a byte string'. This avoids ambiguity and ensures that
your code keeps working as intended if you switch between python2 and python3.

The only place where you can pass unicode objects are filesytem paths like

• Directory name of the database itself rocksdb.DB.__init__()

• rocksdb.Options.wal_dir

• rocksdb.Options.db_log_dir

To encode this path name, sys.getfilesystemencoding() encoding is used.

1.2.3 Access

Store, Get, Delete is straight forward

Store
db.put(b"key", b"value")

Get
db.get(b"key")

Delete
db.delete(b"key")

It is also possible to gather modifications and apply them in a single operation

batch = rocksdb.WriteBatch()
batch.put(b"key", b"v1")
batch.delete(b"key")
batch.put(b"key", b"v2")
batch.put(b"key", b"v3")

db.write(batch)

1.2. Basic Usage of python-rocksdb 3

python-rocksdb Documentation, Release 0.6.7

Fetch of multiple values at once

db.put(b"key1", b"v1")
db.put(b"key2", b"v2")

ret = db.multi_get([b"key1", b"key2", b"key3"])

prints b"v1"
print ret[b"key1"]

prints None
print ret[b"key3"]

1.2.4 Iteration

Iterators behave slightly different than expected. Per default they are not valid. So you have to call one of its seek
methods first

db.put(b"key1", b"v1")
db.put(b"key2", b"v2")
db.put(b"key3", b"v3")

it = db.iterkeys()
it.seek_to_first()

prints [b'key1', b'key2', b'key3']
print list(it)

it.seek_to_last()
prints [b'key3']
print list(it)

it.seek(b'key2')
prints [b'key2', b'key3']
print list(it)

There are also methods to iterate over values/items

it = db.itervalues()
it.seek_to_first()

prints [b'v1', b'v2', b'v3']
print list(it)

it = db.iteritems()
it.seek_to_first()

prints [(b'key1', b'v1'), (b'key2, b'v2'), (b'key3', b'v3')]
print list(it)

Reversed iteration

it = db.iteritems()
it.seek_to_last()

prints [(b'key3', b'v3'), (b'key2', b'v2'), (b'key1', b'v1')]
print list(reversed(it))

4 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

SeekForPrev (Take the example from https://github.com/facebook/rocksdb/wiki/SeekForPrev):

db.put(b'a1', b'a1_value')
db.put(b'a3', b'a3_value')
db.put(b'b1', b'b1_value')
db.put(b'b2', b'b2_value')
db.put(b'c2', b'c2_value')
db.put(b'c4', b'c4_value')

it = db.iteritems()
it.seek(b'a1')
assertEqual(it.get(), (b'a1', b'a1_value'))
it.seek(b'a3')
assertEqual(it.get(), (b'a3', b'a3_value'))
it.seek_for_prev(b'c4')
assertEqual(it.get(), (b'c4', b'c4_value'))
it.seek_for_prev(b'c3')
assertEqual(it.get(), (b'c2', b'c2_value'))

1.2.5 Snapshots

Snapshots are nice to get a consistent view on the database

self.db.put(b"a", b"1")
self.db.put(b"b", b"2")

snapshot = self.db.snapshot()
self.db.put(b"a", b"2")
self.db.delete(b"b")

it = self.db.iteritems()
it.seek_to_first()

prints {b'a': b'2'}
print dict(it)

it = self.db.iteritems(snapshot=snapshot)
it.seek_to_first()

prints {b'a': b'1', b'b': b'2'}
print dict(it)

1.2.6 MergeOperator

Merge operators are useful for efficient read-modify-write operations. For more details see Merge Operator

A python merge operator must either implement the rocksdb.interfaces.AssociativeMergeOperator
or rocksdb.interfaces.MergeOperator interface.

The following example python merge operator implements a counter

class AssocCounter(rocksdb.interfaces.AssociativeMergeOperator):
def merge(self, key, existing_value, value):

if existing_value:
s = int(existing_value) + int(value)

(continues on next page)

1.2. Basic Usage of python-rocksdb 5

https://github.com/facebook/rocksdb/wiki/Merge-Operator

python-rocksdb Documentation, Release 0.6.7

(continued from previous page)

return (True, str(s).encode('ascii'))
return (True, value)

def name(self):
return b'AssocCounter'

opts = rocksdb.Options()
opts.create_if_missing = True
opts.merge_operator = AssocCounter()
db = rocksdb.DB('test.db', opts)

db.merge(b"a", b"1")
db.merge(b"a", b"1")

prints b'2'
print db.get(b"a")

We provide a set of default operators rocksdb.merge_operators.UintAddOperator and rocksdb.
merge_operators.StringAppendOperator:

from rocksdb.merge_operators import UintAddOperator, StringAppendOperator
opts = rocksdb.Options()
opts.create_if_missing = True
you should also play with StringAppendOperator
opts.merge_operator = UintAddOperator()
db = rocksdb.DB('/tmp/test', opts)
self.db.put(b'a', struct.pack('Q', 5566))
for x in range(1000):

self.db.merge(b"a", struct.pack('Q', x))
self.assertEqual(5566 + sum(range(1000)), struct.unpack('Q', self.db.get(b'a'))[0])

1.2.7 PrefixExtractor

According to Prefix API a prefix_extractor can reduce IO for scans within a prefix range. A python prefix extractor
must implement the rocksdb.interfaces.SliceTransform interface.

The following example presents a prefix extractor of a static size. So always the first 5 bytes are used as the prefix

class StaticPrefix(rocksdb.interfaces.SliceTransform):
def name(self):

return b'static'

def transform(self, src):
return (0, 5)

def in_domain(self, src):
return len(src) >= 5

def in_range(self, dst):
return len(dst) == 5

opts = rocksdb.Options()
opts.create_if_missing=True
opts.prefix_extractor = StaticPrefix()

(continues on next page)

6 Chapter 1. Overview

https://github.com/facebook/rocksdb/wiki/Proposal-for-prefix-API

python-rocksdb Documentation, Release 0.6.7

(continued from previous page)

db = rocksdb.DB('test.db', opts)

db.put(b'00001.x', b'x')
db.put(b'00001.y', b'y')
db.put(b'00001.z', b'z')

db.put(b'00002.x', b'x')
db.put(b'00002.y', b'y')
db.put(b'00002.z', b'z')

db.put(b'00003.x', b'x')
db.put(b'00003.y', b'y')
db.put(b'00003.z', b'z')

prefix = b'00002'

it = db.iteritems()
it.seek(prefix)

prints {b'00002.z': b'z', b'00002.y': b'y', b'00002.x': b'x'}
print dict(itertools.takewhile(lambda item: item[0].startswith(prefix), it))

1.2.8 Backup And Restore

Backup and Restore is done with a separate rocksdb.BackupEngine object.

A backup can only be created on a living database object.

import rocksdb

db = rocksdb.DB("test.db", rocksdb.Options(create_if_missing=True))
db.put(b'a', b'v1')
db.put(b'b', b'v2')
db.put(b'c', b'v3')

Backup is created like this. You can choose any path for the backup destination except the db path itself. If
flush_before_backup is True the current memtable is flushed to disk before backup.

backup = rocksdb.BackupEngine("test.db/backups")
backup.create_backup(db, flush_before_backup=True)

Restore is done like this. The two arguments are the db_dir and wal_dir, which are mostly the same.

backup = rocksdb.BackupEngine("test.db/backups")
backup.restore_latest_backup("test.db", "test.db")

1.2.9 Change Memtable Or SST Implementations

As noted here MemtableFactories, RocksDB offers different implementations for the memtable representation. Per
default rocksdb.SkipListMemtableFactory is used, but changing it to a different one is veary easy.

Here is an example for HashSkipList-MemtableFactory. Keep in mind: To use the hashed based MemtableFactories
you must set rocksdb.Options.prefix_extractor. In this example all keys have a static prefix of len 5.

1.2. Basic Usage of python-rocksdb 7

python-rocksdb Documentation, Release 0.6.7

class StaticPrefix(rocksdb.interfaces.SliceTransform):
def name(self):

return b'static'

def transform(self, src):
return (0, 5)

def in_domain(self, src):
return len(src) >= 5

def in_range(self, dst):
return len(dst) == 5

opts = rocksdb.Options()
opts.prefix_extractor = StaticPrefix()
opts.allow_concurrent_memtable_write = False
opts.memtable_factory = rocksdb.HashSkipListMemtableFactory()
opts.create_if_missing = True

db = rocksdb.DB("test.db", opts)
db.put(b'00001.x', b'x')
db.put(b'00001.y', b'y')
db.put(b'00002.x', b'x')

For initial bulk loads the Vector-MemtableFactory makes sense.

opts = rocksdb.Options()
opts.allow_concurrent_memtable_write = False
opts.memtable_factory = rocksdb.VectorMemtableFactory()
opts.create_if_missing = True

db = rocksdb.DB("test.db", opts)

As noted here TableFactories, it is also possible to change the representation of the final data files. Here is an example
how to use a ‘PlainTable’.

opts = rocksdb.Options()
opts.table_factory = rocksdb.PlainTableFactory()
opts.create_if_missing = True

db = rocksdb.DB("test.db", opts)

1.2.10 Change Compaction Style

RocksDB has a compaction algorithm called universal. This style typically results in lower write amplification but
higher space amplification than Level Style Compaction. See here for more details, https://github.com/facebook/
rocksdb/wiki/Rocksdb-Architecture-Guide#multi-threaded-compactions

Here is an example to switch to universal style compaction.

opts = rocksdb.Options()
opts.compaction_style = "universal"
opts.compaction_options_universal = {"min_merge_width": 3}

8 Chapter 1. Overview

https://github.com/facebook/rocksdb/wiki/Rocksdb-Architecture-Guide#multi-threaded-compactions
https://github.com/facebook/rocksdb/wiki/Rocksdb-Architecture-Guide#multi-threaded-compactions

python-rocksdb Documentation, Release 0.6.7

See here for more options on universal style compaction, rocksdb.Options.
compaction_options_universal

1.2.11 Iterate Over WriteBatch

In same cases you need to know, what operations happened on a WriteBatch. The pyrocksdb WriteBatch supports the
iterator protocol, see this example.

batch = rocksdb.WriteBatch()
batch.put(b"key1", b"v1")
batch.delete(b'a')
batch.merge(b'xxx', b'value')

for op, key, value in batch:
print op, key, value

prints the following three lines
Put key1 v1
Delete a
Merge xxx value

1.3 Python driver for RocksDB

1.3.1 Options creation

Options object

class rocksdb.Options

Important: The default values mentioned here, describe the values of the C++ library only. This wrapper does
not set any default value itself. So as soon as the rocksdb developers change a default value this document could
be outdated. So if you really depend on a default value, double check it with the according version of the C++
library.

Most recent default values should be here
https://github.com/facebook/rocksdb/blob/master/include/rocksdb/options.h
https://github.com/facebook/rocksdb/blob/master/util/options.cc

__init__(**kwargs)
All options mentioned below can also be passed as keyword-arguments in the constructor. For example:

import rocksdb

opts = rocksdb.Options(create_if_missing=True)
(continues on next page)

1.3. Python driver for RocksDB 9

https://github.com/facebook/rocksdb/blob/master/include/rocksdb/options.h
https://github.com/facebook/rocksdb/blob/master/util/options.cc

python-rocksdb Documentation, Release 0.6.7

(continued from previous page)

is the same as
opts = rocksdb.Options()
opts.create_if_missing = True

create_if_missing
If True, the database will be created if it is missing.

Type: bool
Default: False

error_if_exists
If True, an error is raised if the database already exists.

Type: bool
Default: False

paranoid_checks
If True, the implementation will do aggressive checking of the data it is processing and will stop early if
it detects any errors. This may have unforeseen ramifications: for example, a corruption of one DB entry
may cause a large number of entries to become unreadable or for the entire DB to become unopenable. If
any of the writes to the database fails (Put, Delete, Merge, Write), the database will switch to read-only
mode and fail all other Write operations.

Type: bool
Default: True

write_buffer_size
Amount of data to build up in memory (backed by an unsorted log on disk) before converting to a sorted
on-disk file.

Larger values increase performance, especially during bulk loads. Up to max_write_buffer_number write
buffers may be held in memory at the same time, so you may wish to adjust this parameter to control
memory usage. Also, a larger write buffer will result in a longer recovery time the next time the database
is opened.

Type: int
Default: 4194304

max_write_buffer_number
The maximum number of write buffers that are built up in memory. The default is 2, so that when 1 write
buffer is being flushed to storage, new writes can continue to the other write buffer.

Type: int
Default: 2

10 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

min_write_buffer_number_to_merge
The minimum number of write buffers that will be merged together before writing to storage. If set to 1,
then all write buffers are fushed to L0 as individual files and this increases read amplification because a
get request has to check in all of these files. Also, an in-memory merge may result in writing lesser data to
storage if there are duplicate records in each of these individual write buffers.

Type: int
Default: 1

max_open_files
Number of open files that can be used by the DB. You may need to increase this if your database has a large
working set. Value -1 means files opened are always kept open. You can estimate number of files based
on target_file_size_base and target_file_size_multiplier for level-based compaction. For universal-style
compaction, you can usually set it to -1.

Type: int
Default: 5000

compression
Compress blocks using the specified compression algorithm. This parameter can be changed dynamically.

Type: Member of rocksdb.CompressionType
Default: rocksdb.CompressionType.snappy_compression

num_levels
Number of levels for this database

Type: int
Default: 7

level0_file_num_compaction_trigger
Number of files to trigger level-0 compaction. A value <0 means that level-0 compaction will not be
triggered by number of files at all.

Type: int
Default: 4

level0_slowdown_writes_trigger
Soft limit on number of level-0 files. We start slowing down writes at this point. A value <0 means that no
writing slow down will be triggered by number of files in level-0.

Type: int

1.3. Python driver for RocksDB 11

python-rocksdb Documentation, Release 0.6.7

Default: 20

level0_stop_writes_trigger
Maximum number of level-0 files. We stop writes at this point.

Type: int
Default: 24

max_mem_compaction_level
Maximum level to which a new compacted memtable is pushed if it does not create overlap. We try to push
to level 2 to avoid the relatively expensive level 0=>1 compactions and to avoid some expensive manifest
file operations. We do not push all the way to the largest level since that can generate a lot of wasted disk
space if the same key space is being repeatedly overwritten.

Type: int
Default: 2

target_file_size_base

Target file size for compaction.
target_file_size_base is per-file size for level-1.
Target file size for level L can be calculated by
target_file_size_base * (target_file_size_multiplier ^ (L-1)).

For example, if target_file_size_base is 2MB and target_file_size_multiplier is 10, then each file on level-1
will be 2MB, and each file on level 2 will be 20MB, and each file on level-3 will be 200MB.

Type: int
Default: 2097152

target_file_size_multiplier

by default target_file_size_multiplier is 1, which means
by default files in different levels will have similar size.

Type: int
Default: 1

max_bytes_for_level_base
Control maximum total data size for a level. max_bytes_for_level_base is the max total for level-
1. Maximum number of bytes for level L can be calculated as (max_bytes_for_level_base) *
(max_bytes_for_level_multiplier ^ (L-1)) For example, if max_bytes_for_level_base is 20MB, and if

12 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

max_bytes_for_level_multiplier is 10, total data size for level-1 will be 20MB, total file size for level-2
will be 200MB, and total file size for level-3 will be 2GB.

Type: int
Default: 10485760

max_bytes_for_level_multiplier
See max_bytes_for_level_base

Type: int
Default: 10

max_bytes_for_level_multiplier_additional
Different max-size multipliers for different levels. These are multiplied by
max_bytes_for_level_multiplier to arrive at the max-size of each level.

Type: [int]
Default: [1, 1, 1, 1, 1, 1, 1]

max_compaction_bytes
We try to limit number of bytes in one compaction to be lower than this threshold. But it’s not guaranteed.
Value 0 will be sanitized.

Type: int
Default: target_file_size_base * 25

use_fsync
If true, then every store to stable storage will issue a fsync. If false, then every store to stable storage will
issue a fdatasync. This parameter should be set to true while storing data to filesystem like ext3 that can
lose files after a reboot.

Type: bool
Default: False

db_log_dir
This specifies the info LOG dir. If it is empty, the log files will be in the same dir as data. If it is non
empty, the log files will be in the specified dir, and the db data dir’s absolute path will be used as the log
file name’s prefix.

Type: unicode
Default: ""

1.3. Python driver for RocksDB 13

python-rocksdb Documentation, Release 0.6.7

wal_dir
This specifies the absolute dir path for write-ahead logs (WAL). If it is empty, the log files will be in the
same dir as data, dbname is used as the data dir by default. If it is non empty, the log files will be in kept
the specified dir. When destroying the db, all log files in wal_dir and the dir itself is deleted

Type: unicode
Default: ""

delete_obsolete_files_period_micros
The periodicity when obsolete files get deleted. The default value is 6 hours. The files that get out of scope
by compaction process will still get automatically delete on every compaction, regardless of this setting

Type: int
Default: 21600000000

max_background_compactions
Maximum number of concurrent background jobs, submitted to the default LOW priority thread pool

Type: int
Default: 1

max_background_flushes
Maximum number of concurrent background memtable flush jobs, submitted to the HIGH priority thread
pool. By default, all background jobs (major compaction and memtable flush) go to the LOW priority
pool. If this option is set to a positive number, memtable flush jobs will be submitted to the HIGH priority
pool. It is important when the same Env is shared by multiple db instances. Without a separate pool, long
running major compaction jobs could potentially block memtable flush jobs of other db instances, leading
to unnecessary Put stalls.

Type: int
Default: 1

max_log_file_size
Specify the maximal size of the info log file. If the log file is larger than max_log_file_size, a new info log
file will be created. If max_log_file_size == 0, all logs will be written to one log file.

Type: int
Default: 0

log_file_time_to_roll
Time for the info log file to roll (in seconds). If specified with non-zero value, log file will be rolled if it
has been active longer than log_file_time_to_roll. A value of 0 means disabled.

14 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

Type: int
Default: 0

keep_log_file_num
Maximal info log files to be kept.

Type: int
Default: 1000

soft_rate_limit
Puts are delayed 0-1 ms when any level has a compaction score that exceeds soft_rate_limit. This is
ignored when == 0.0. CONSTRAINT: soft_rate_limit <= hard_rate_limit. If this constraint does not hold,
RocksDB will set soft_rate_limit = hard_rate_limit. A value of 0 means disabled.

Type: float
Default: 0

hard_rate_limit
Puts are delayed 1ms at a time when any level has a compaction score that exceeds hard_rate_limit. This
is ignored when <= 1.0. A value fo 0 means disabled.

Type: float
Default: 0

rate_limit_delay_max_milliseconds
Max time a put will be stalled when hard_rate_limit is enforced. If 0, then there is no limit.

Type: int
Default: 1000

max_manifest_file_size
manifest file is rolled over on reaching this limit. The older manifest file be deleted. The default value is
MAX_INT so that roll-over does not take place.

Type: int
Default: (2**64) - 1

table_cache_numshardbits
Number of shards used for table cache.

Type: int

1.3. Python driver for RocksDB 15

python-rocksdb Documentation, Release 0.6.7

Default: 4

arena_block_size
size of one block in arena memory allocation. If <= 0, a proper value is automatically calculated (usually
1/10 of writer_buffer_size).

Type: int
Default: 0

disable_auto_compactions
Disable automatic compactions. Manual compactions can still be issued on this database.

Type: bool
Default: False

wal_ttl_seconds, wal_size_limit_mb
The following two fields affect how archived logs will be deleted.

1. If both set to 0, logs will be deleted asap and will not get into the archive.

2. If wal_ttl_seconds is 0 and wal_size_limit_mb is not 0, WAL files will be checked every 10 min and
if total size is greater then wal_size_limit_mb, they will be deleted starting with the earliest until
size_limit is met. All empty files will be deleted.

3. If wal_ttl_seconds is not 0 and wal_size_limit_mb is 0, then WAL files will be checked every
wal_ttl_secondsi / 2 and those that are older than wal_ttl_seconds will be deleted.

4. If both are not 0, WAL files will be checked every 10 min and both checks will be performed with ttl
being first.

Type: int
Default: 0

manifest_preallocation_size
Number of bytes to preallocate (via fallocate) the manifest files. Default is 4mb, which is reasonable to
reduce random IO as well as prevent overallocation for mounts that preallocate large amounts of data (such
as xfs’s allocsize option).

Type: int
Default: 4194304

purge_redundant_kvs_while_flush
Purge duplicate/deleted keys when a memtable is flushed to storage.

Type: bool
Default: True

16 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

allow_mmap_reads
Allow the OS to mmap file for reading sst tables

Type: bool
Default: True

allow_mmap_writes
Allow the OS to mmap file for writing

Type: bool
Default: False

is_fd_close_on_exec
Disable child process inherit open files

Type: bool
Default: True

skip_log_error_on_recovery
Skip log corruption error on recovery (If client is ok with losing most recent changes)

Type: bool
Default: False

stats_dump_period_sec
If not zero, dump rocksdb.stats to LOG every stats_dump_period_sec

Type: int
Default: 3600

advise_random_on_open
If set true, will hint the underlying file system that the file access pattern is random, when a sst file is
opened.

Type: bool
Default: True

use_adaptive_mutex
Use adaptive mutex, which spins in the user space before resorting to kernel. This could reduce context
switch when the mutex is not heavily contended. However, if the mutex is hot, we could end up wasting
spin time.

1.3. Python driver for RocksDB 17

python-rocksdb Documentation, Release 0.6.7

Type: bool
Default: False

bytes_per_sync
Allows OS to incrementally sync files to disk while they are being written, asynchronously, in the back-
ground. Issue one request for every bytes_per_sync written. 0 turns it off.

Type: int
Default: 0

compaction_style
The compaction style. Could be set to "level" to use level-style compaction. For universal-style com-
paction use "universal". For FIFO compaction use "fifo". If no compaction style use "none".

Type: string
Default: level

compaction_pri
If level compaction_style = kCompactionStyleLevel, for each level, which files are prioritized to be picked
to compact.

Type: Member of rocksdb.CompactionPri
Default: rocksdb.CompactionPri.kByCompensatedSize

compaction_options_universal
Options to use for universal-style compaction. They make only sense if rocksdb.Options.
compaction_style is set to "universal".

It is a dict with the following keys.

• size_ratio: Percentage flexibilty while comparing file size. If the candidate file(s) size is 1%
smaller than the next file’s size, then include next file into this candidate set. Default: 1

• min_merge_width: The minimum number of files in a single compaction run. Default: 2

• max_merge_width: The maximum number of files in a single compaction run. Default:
UINT_MAX

• max_size_amplification_percent: The size amplification is defined as the amount (in per-
centage) of additional storage needed to store a single byte of data in the database. For example,
a size amplification of 2% means that a database that contains 100 bytes of user-data may occupy
upto 102 bytes of physical storage. By this definition, a fully compacted database has a size am-
plification of 0%. Rocksdb uses the following heuristic to calculate size amplification: it assumes
that all files excluding the earliest file contribute to the size amplification. Default: 200, which
means that a 100 byte database could require upto 300 bytes of storage.

• compression_size_percent: If this option is set to be -1 (the default value), all the output
files will follow compression type specified.

18 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

If this option is not negative, we will try to make sure compressed size is just above this value. In
normal cases, at least this percentage of data will be compressed.

When we are compacting to a new file, here is the criteria whether it needs to be compressed:
assuming here are the list of files sorted by generation time: A1...An B1...Bm C1...
Ct where A1 is the newest and Ct is the oldest, and we are going to compact B1...Bm, we
calculate the total size of all the files as total_size, as well as the total size of C1...Ct as
total_C, the compaction output file will be compressed if total_C / total_size <
this percentage. Default: -1

• stop_style: The algorithm used to stop picking files into a single compaction. Can be either
"similar_size" or "total_size".

– similar_size: Pick files of similar size.

– total_size: Total size of picked files is greater than next file.

Default: "total_size"

For setting options, just assign a dict with the fields to set. It is allowed to omit keys in this dict. Missing
keys are just not set to the underlying options object.

This example just changes the stop_style and leaves the other options untouched.

opts = rocksdb.Options()
opts.compaction_options_universal = {'stop_style': 'similar_size'}

max_sequential_skip_in_iterations
An iteration->Next() sequentially skips over keys with the same user-key unless this option is set. This
number specifies the number of keys (with the same userkey) that will be sequentially skipped before a
reseek is issued.

Type: int
Default: 8

memtable_factory
This is a factory that provides MemTableRep objects. Right now you can assing instances of the following
classes.

• rocksdb.VectorMemtableFactory

• rocksdb.SkipListMemtableFactory

• rocksdb.HashSkipListMemtableFactory

• rocksdb.HashLinkListMemtableFactory

Default: rocksdb.SkipListMemtableFactory

table_factory
Factory for the files forming the persisten data storage. Sometimes they are also named SST-Files. Right
now you can assign instances of the following classes.

• rocksdb.BlockBasedTableFactory

• rocksdb.PlainTableFactory

• rocksdb.TotalOrderPlainTableFactory

Default: rocksdb.BlockBasedTableFactory

1.3. Python driver for RocksDB 19

python-rocksdb Documentation, Release 0.6.7

inplace_update_support
Allows thread-safe inplace updates. Requires Updates if

• key exists in current memtable

• new sizeof(new_value) <= sizeof(old_value)

• old_value for that key is a put i.e. kTypeValue

Type: bool
Default: False

inplace_update_num_locks

Number of locks used for inplace update.
Default: 10000, if inplace_update_support = true, else 0.

Type: int
Default: 10000

comparator
Comparator used to define the order of keys in the table. A python comparator must implement the
rocksdb.interfaces.Comparator interface.

Requires: The client must ensure that the comparator supplied here has the same name and orders keys
exactly the same as the comparator provided to previous open calls on the same DB.

Default: rocksdb.BytewiseComparator

merge_operator
The client must provide a merge operator if Merge operation needs to be accessed. Calling Merge on a DB
without a merge operator would result in rocksdb.errors.NotSupported. The client must ensure
that the merge operator supplied here has the same name and exactly the same semantics as the merge
operator provided to previous open calls on the same DB. The only exception is reserved for upgrade,
where a DB previously without a merge operator is introduced to Merge operation for the first time. It’s
necessary to specify a merge operator when openning the DB in this case.

A python merge operator must implement the rocksdb.interfaces.MergeOperator or
rocksdb.interfaces.AssociativeMergeOperator interface.

Default: None

prefix_extractor
If not None, use the specified function to determine the prefixes for keys. These prefixes will be placed in
the filter. Depending on the workload, this can reduce the number of read-IOP cost for scans when a prefix
is passed to the calls generating an iterator (rocksdb.DB.iterkeys() . . .).

A python prefix_extractor must implement the rocksdb.interfaces.SliceTransform interface

For prefix filtering to work properly, “prefix_extractor” and “comparator” must be such that the following
properties hold:

1. key.starts_with(prefix(key))

2. compare(prefix(key), key) <= 0

20 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

3. If compare(k1, k2) <= 0, then compare(prefix(k1), prefix(k2)) <= 0

4. prefix(prefix(key)) == prefix(key)

Default: None

row_cache
A global cache for table-level rows. If None this cache is not used. Otherwise it must be an instance of
rocksdb.LRUCache

Default: None

CompactionPri

class rocksdb.CompactionPri
Defines the support compression types

kByCompensatedSize

kOldestLargestSeqFirst

kOldestSmallestSeqFirst

kMinOverlappingRatio

CompressionTypes

class rocksdb.CompressionType
Defines the support compression types

no_compression

snappy_compression

zlib_compression

bzip2_compression

lz4_compression

lz4hc_compression

xpress_compression

zstd_compression

zstdnotfinal_compression

disable_compression

BytewiseComparator

class rocksdb.BytewiseComparator
Wraps the rocksdb Bytewise Comparator, it uses lexicographic byte-wise ordering

1.3. Python driver for RocksDB 21

python-rocksdb Documentation, Release 0.6.7

BloomFilterPolicy

class rocksdb.BloomFilterPolicy
Wraps the rocksdb BloomFilter Policy

__init__(bits_per_key)

Parameters bits_per_key (int) – Specifies the approximately number of bits per key. A good
value for bits_per_key is 10, which yields a filter with ~ 1% false positive rate.

LRUCache

class rocksdb.LRUCache
Wraps the rocksdb LRUCache

__init__(capacity, shard_bits=None)
Create a new cache with a fixed size capacity (in bytes). The cache is sharded to 2^numShardBits shards,
by hash of the key. The total capacity is divided and evenly assigned to each shard.

TableFactories

Currently RocksDB supports two types of tables: plain table and block-based table. Instances of this classes can
assigned to rocksdb.Options.table_factory

• Block-based table: This is the default table type that RocksDB inherited from LevelDB. It was designed for
storing data in hard disk or flash device.

• Plain table: It is one of RocksDB’s SST file format optimized for low query latency on pure-memory or really
low-latency media.

Tutorial of rocksdb table formats is available here: https://github.com/facebook/rocksdb/wiki/
A-Tutorial-of-RocksDB-SST-formats

class rocksdb.BlockBasedTableFactory
Wraps BlockBasedTableFactory of RocksDB.

__init__(index_type='binary_search', hash_index_allow_collision=True, checksum='crc32', block_cache, block_cache_compressed, filter_policy=None, no_block_cache=False, block_size=None, block_size_deviation=None, block_restart_interval=None, whole_key_filtering=None):

Parameters

• index_type (string) –

– binary_search a space efficient index block that is optimized for binary-search-based
index.

– hash_search the hash index. If enabled, will do hash lookup when Op-
tions.prefix_extractor is provided.

• hash_index_allow_collision (bool) – Influence the behavior when
hash_search is used. If False, stores a precise prefix to block range mapping.
If True, does not store prefix and allows prefix hash collision (less memory consumption)

• checksum (string) – Use the specified checksum type. Newly created table files will
be protected with this checksum type. Old table files will still be readable, even though they
have different checksum type. Can be either crc32 or xxhash.

• block_cache – Control over blocks (user data is stored in a set of blocks, and a block is
the unit of reading from disk).

22 Chapter 1. Overview

https://github.com/facebook/rocksdb/wiki/A-Tutorial-of-RocksDB-SST-formats
https://github.com/facebook/rocksdb/wiki/A-Tutorial-of-RocksDB-SST-formats

python-rocksdb Documentation, Release 0.6.7

If None, rocksdb will automatically create and use an 8MB internal cache. If not None use
the specified cache for blocks. In that case it must be an instance of rocksdb.LRUCache

• block_cache_compressed – If None, rocksdb will not use a compressed block cache.
If not None use the specified cache for compressed blocks. In that case it must be an
instance of rocksdb.LRUCache

• filter_policy – If not None use the specified filter policy to reduce disk reads. A
python filter policy must implement the rocksdb.interfaces.FilterPolicy in-
terface. Recommended is a instance of rocksdb.BloomFilterPolicy

• no_block_cache (bool) – Disable block cache. If this is set to true, then no block
cache should be used, and the block_cache should point to None

• block_size (int) – If set to None the rocksdb default of 4096 is used. Approximate
size of user data packed per block. Note that the block size specified here corresponds to
uncompressed data. The actual size of the unit read from disk may be smaller if compression
is enabled. This parameter can be changed dynamically.

• block_size_deviation (int) – If set to None the rocksdb default of 10 is used.
This is used to close a block before it reaches the configured ‘block_size’. If the percentage
of free space in the current block is less than this specified number and adding a new record
to the block will exceed the configured block size, then this block will be closed and the
new record will be written to the next block.

• block_restart_interval (int) – If set to None the rocksdb default of 16 is used.
Number of keys between restart points for delta encoding of keys. This parameter can be
changed dynamically. Most clients should leave this parameter alone.

• whole_key_filtering (bool) – If set to None the rocksdb default of True is used.
If True, place whole keys in the filter (not just prefixes). This must generally be true for
gets to be efficient.

class rocksdb.PlainTableFactory
Plain Table with prefix-only seek. It wraps rocksdb PlainTableFactory.

For this factory, you need to set rocksdb.Options.prefix_extractor properly to make it work.
Look-up will start with prefix hash lookup for key prefix. Inside the hash bucket found, a binary search is
executed for hash conflicts. Finally, a linear search is used.

__init__(user_key_len=0, bloom_bits_per_key=10, hash_table_ratio=0.75, index_sparseness=10,
huge_page_tlb_size=0, encoding_type=’plain’, full_scan_mode=False,
store_index_in_file=False)

Parameters

• user_key_len (int) – Plain table has optimization for fix-sized keys, which can
be specified via user_key_len. Alternatively, you can pass 0 if your keys have variable
lengths.

• bloom_bits_per_key (int) – The number of bits used for bloom filer per prefix.
You may disable it by passing 0.

• hash_table_ratio (float) – The desired utilization of the hash table used for prefix
hashing. hash_table_ratio = number of prefixes / #buckets in the hash table.

• index_sparseness (int) – Inside each prefix, need to build one index record for
how many keys for binary search inside each hash bucket. For encoding type prefix,
the value will be used when writing to determine an interval to rewrite the full key. It will
also be used as a suggestion and satisfied when possible.

1.3. Python driver for RocksDB 23

python-rocksdb Documentation, Release 0.6.7

• huge_page_tlb_size (int) – If <=0, allocate hash indexes and blooms from mal-
loc. Otherwise from huge page TLB. The user needs to reserve huge pages for it to
be allocated, like: sysctl -w vm.nr_hugepages=20 See linux doc Documenta-
tion/vm/hugetlbpage.txt

• encoding_type (string) – How to encode the keys. The value will determine how
to encode keys when writing to a new SST file. This value will be stored inside the SST
file which will be used when reading from the file, which makes it possible for users to
choose different encoding type when reopening a DB. Files with different encoding types
can co-exist in the same DB and can be read.

– plain: Always write full keys without any special encoding.

– prefix: Find opportunity to write the same prefix once for multiple rows. In
some cases, when a key follows a previous key with the same prefix, instead of
writing out the full key, it just writes out the size of the shared prefix, as well as other
bytes, to save some bytes.

When using this option, the user is required to use the same prefix extractor to make
sure the same prefix will be extracted from the same key. The Name() value of the
prefix extractor will be stored in the file. When reopening the file, the name of the
options.prefix_extractor given will be bitwise compared to the prefix extractors stored
in the file. An error will be returned if the two don’t match.

• full_scan_mode (bool) – Mode for reading the whole file one record by one without
using the index.

• store_index_in_file (bool) – Compute plain table index and bloom filter during
file building and store it in file. When reading file, index will be mmaped instead of
recomputation.

MemtableFactories

RocksDB has different classes to represent the in-memory buffer for the current operations. You have to assing
instances of the following classes to rocksdb.Options.memtable_factory . This page has a comparison the
most popular ones. https://github.com/facebook/rocksdb/wiki/Hash-based-memtable-implementations

class rocksdb.VectorMemtableFactory
This creates MemTableReps that are backed by an std::vector. On iteration, the vector is sorted. This is useful
for workloads where iteration is very rare and writes are generally not issued after reads begin.

__init__(count=0)

Parameters count (int) – Passed to the constructor of the underlying std::vector of each
VectorRep. On initialization, the underlying array will be at least count bytes reserved for
usage.

class rocksdb.SkipListMemtableFactory
This uses a skip list to store keys.

__init__()

class rocksdb.HashSkipListMemtableFactory
This class contains a fixed array of buckets, each pointing to a skiplist (null if the bucket is empty).

Note: rocksdb.Options.prefix_extractor must be set, otherwise rocksdb fails back to skip-list.

__init__(bucket_count = 1000000, skiplist_height = 4, skiplist_branching_factor = 4)

24 Chapter 1. Overview

https://github.com/facebook/rocksdb/wiki/Hash-based-memtable-implementations

python-rocksdb Documentation, Release 0.6.7

Parameters

• bucket_count (int) – number of fixed array buckets

• skiplist_height (int) – the max height of the skiplist

• skiplist_branching_factor (int) – probabilistic size ratio between adja-
cent link lists in the skiplist

class rocksdb.HashLinkListMemtableFactory
The factory is to create memtables with a hashed linked list. It contains a fixed array of buckets, each pointing
to a sorted single linked list (null if the bucket is empty).

Note: rocksdb.Options.prefix_extractor must be set, otherwise rocksdb fails back to skip-list.

__init__(bucket_count=50000)

Parameters bucket (int) – number of fixed array buckets

1.3.2 Database interactions

Database object

class rocksdb.DB

__init__(db_name, Options opts, read_only=False)

Parameters

• db_name (unicode) – Name of the database to open

• opts (rocksdb.Options) – Options for this specific database

• read_only (bool) – If True the database is opened read-only. All DB calls which
modify data will raise an Exception.

put(key, value, sync=False, disable_wal=False)
Set the database entry for “key” to “value”.

Parameters

• key (bytes) – Name for this entry

• value (bytes) – Data for this entry

• sync (bool) – If True, the write will be flushed from the operating system buffer
cache (by calling WritableFile::Sync()) before the write is considered complete. If
this flag is true, writes will be slower.

If this flag is False, and the machine crashes, some recent writes may be lost. Note
that if it is just the process that crashes (i.e., the machine does not reboot), no writes
will be lost even if sync == False.

In other words, a DB write with sync == False has similar crash semantics as the
“write()” system call. A DB write with sync == True has similar crash semantics
to a “write()” system call followed by “fdatasync()”.

• disable_wal (bool) – If True, writes will not first go to the write ahead log, and
the write may got lost after a crash.

1.3. Python driver for RocksDB 25

python-rocksdb Documentation, Release 0.6.7

delete(key, sync=False, disable_wal=False)
Remove the database entry for “key”.

Parameters

• key (bytes) – Name to delete

• sync – See rocksdb.DB.put()

• disable_wal – See rocksdb.DB.put()

Raises rocksdb.errors.NotFound – If the key did not exists

merge(key, value, sync=False, disable_wal=False)
Merge the database entry for “key” with “value”. The semantics of this operation is determined by the
user provided merge_operator when opening DB.

See rocksdb.DB.put() for the parameters

Raises rocksdb.errors.NotSupported if this is called and no rocksdb.
Options.merge_operator was set at creation

write(batch, sync=False, disable_wal=False)
Apply the specified updates to the database.

Parameters

• batch (rocksdb.WriteBatch) – Batch to apply

• sync – See rocksdb.DB.put()

• disable_wal – See rocksdb.DB.put()

get(key, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

Parameters

• key (bytes) – Name to get

• verify_checksums (bool) – If True, all data read from underlying storage will
be verified against corresponding checksums.

• fill_cache (bool) – Should the “data block”, “index block” or “filter block” read
for this iteration be cached in memory? Callers may wish to set this field to False
for bulk scans.

• snapshot (rocksdb.Snapshot) – If not None, read as of the supplied snap-
shot (which must belong to the DB that is being read and which must not have been
released). Is it None a implicit snapshot of the state at the beginning of this read
operation is used

• read_tier (string) – Specify if this read request should process data that AL-
READY resides on a particular cache. If the required data is not found at the specified
cache, then rocksdb.errors.Incomplete is raised.

Use all if a fetch from disk is allowed.
Use cache if only data from cache is allowed.

Returns None if not found, else the value for this key

multi_get(keys, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

Parameters keys (list of bytes) – Keys to fetch

26 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

For the other params see rocksdb.DB.get()

Returns A dict where the value is either bytes or None if not found

Raises If the fetch for a single key fails

Note: keys will not be “de-duplicated”. Duplicate keys will return duplicate values in order.

key_may_exist(key, fetch=False, verify_checksums=False, fill_cache=True, snapshot=None,
read_tier="all")

If the key definitely does not exist in the database, then this method returns False, else True. If the
caller wants to obtain value when the key is found in memory, fetch should be set to True. This check is
potentially lighter-weight than invoking DB::get(). One way to make this lighter weight is to avoid doing
any IOs.

Parameters

• key (bytes) – Key to check

• fetch (bool) – Obtain also the value if found

For the other params see rocksdb.DB.get()

Returns

• (True, None) if key is found but value not in memory

• (True, None) if key is found and fetch=False

• (True, <data>) if key is found and value in memory and fetch=True

• (False, None) if key is not found

iterkeys(verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")
Iterate over the keys

For other params see rocksdb.DB.get()

Returns A iterator object which is not valid yet. Call first one of the seek methods of the
iterator to position it

Return type rocksdb.BaseIterator

itervalues(verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")
Iterate over the values

For other params see rocksdb.DB.get()

Returns A iterator object which is not valid yet. Call first one of the seek methods of the
iterator to position it

Return type rocksdb.BaseIterator

iteritems(verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")
Iterate over the items

For other params see rocksdb.DB.get()

Returns A iterator object which is not valid yet. Call first one of the seek methods of the
iterator to position it

Return type rocksdb.BaseIterator

1.3. Python driver for RocksDB 27

python-rocksdb Documentation, Release 0.6.7

snapshot()
Return a handle to the current DB state. Iterators created with this handle will all observe a stable snapshot
of the current DB state.

Return type rocksdb.Snapshot

get_property(prop)
DB implementations can export properties about their state via this method. If “property” is a valid
property understood by this DB implementation, a byte string with its value is returned. Otherwise None

Valid property names include:

• b"rocksdb.num-files-at-level<N>": return the number of files at level <N>, where
<N> is an ASCII representation of a level number (e.g. “0”).

• b"rocksdb.stats": returns a multi-line byte string that describes statistics about the in-
ternal operation of the DB.

• b"rocksdb.sstables": returns a multi-line byte string that describes all of the sstables
that make up the db contents.

• b"rocksdb.num-immutable-mem-table": Number of immutable mem tables.

• b"rocksdb.mem-table-flush-pending": Returns 1 if mem table flush is pending, other-
wise 0.

• b"rocksdb.compaction-pending": Returns 1 if a compaction is pending, otherweise 0.

• b"rocksdb.background-errors": Returns accumulated background errors encountered.

• b"rocksdb.cur-size-active-mem-table": Returns current size of the active memtable.

get_live_files_metadata()
Returns a list of all table files.

It returns a list of dict’s were each dict has the following keys.

name Name of the file

level Level at which this file resides

size File size in bytes

smallestkey Smallest user defined key in the file

largestkey Largest user defined key in the file

smallest_seqno smallest seqno in file

largest_seqno largest seqno in file

compact_range(begin=None, end=None, ** options)
Compact the underlying storage for the key range [begin,end]. The actual compaction interval might be
superset of [begin, end]. In particular, deleted and overwritten versions are discarded, and the data is
rearranged to reduce the cost of operations needed to access the data.

This operation should typically only be invoked by users who understand the underlying implementation.

begin == None is treated as a key before all keys in the database. end == None is treated as a
key after all keys in the database. Therefore the following call will compact the entire database: db.
compact_range().

Note that after the entire database is compacted, all data are pushed down to the last level containing any
data. If the total data size after compaction is reduced, that level might not be appropriate for hosting all
the files. In this case, client could set change_level to True, to move the files back to the minimum level
capable of holding the data set or a given level (specified by non-negative target_level).

28 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

Parameters

• begin (bytes) – Key where to start compaction. If None start at the beginning of
the database.

• end (bytes) – Key where to end compaction. If None end at the last key of the
database.

• change_level (bool) – If True, compacted files will be moved to the mini-
mum level capable of holding the data or given level (specified by non-negative tar-
get_level). If False you may end with a bigger level than configured. Default is
False.

• target_level (int) – If change_level is true and target_level have non-negative
value, compacted files will be moved to target_level. Default is -1.

• bottommost_level_compaction (string) – For level based compaction, we
can configure if we want to skip/force bottommost level compaction. By default level
based compaction will only compact the bottommost level if there is a compaction
filter. It can be set to the following values.

skip Skip bottommost level compaction

if_compaction_filter Only compact bottommost level if there is a com-
paction filter. This is the default.

force Always compact bottommost level

options
Returns the associated rocksdb.Options instance.

Note: Changes to this object have no effect anymore. Consider this as read-only

Iterator

class rocksdb.BaseIterator
Base class for all iterators in this module. After creation a iterator is invalid. Call one of the seek methods first
before starting iteration

seek_to_first()
Position at the first key in the source

seek_to_last()
Position at the last key in the source

seek(key)

Parameters key (bytes) – Position at the first key in the source that at or past

Methods to support the python iterator protocol

__iter__()

__next__()

__reversed__()

1.3. Python driver for RocksDB 29

python-rocksdb Documentation, Release 0.6.7

Snapshot

class rocksdb.Snapshot
Opaque handler for a single Snapshot. Snapshot is released if nobody holds a reference on it. Retrieved via
rocksdb.DB.snapshot()

WriteBatch

class rocksdb.WriteBatch

WriteBatch holds a collection of updates to apply atomically to a DB.

The updates are applied in the order in which they are added to the WriteBatch. For example, the
value of “key” will be “v3” after the following batch is written:

batch = rocksdb.WriteBatch()
batch.put(b"key", b"v1")
batch.delete(b"key")
batch.put(b"key", b"v2")
batch.put(b"key", b"v3")

__init__(data=None)
Creates a WriteBatch.

Parameters data (bytes) – A serialized version of a previous WriteBatch. As retrieved
from a previous .data() call. If None a empty WriteBatch is generated

put(key, value)
Store the mapping “key->value” in the database.

Parameters

• key (bytes) – Name of the entry to store

• value (bytes) – Data of this entry

merge(key, value)
Merge “value” with the existing value of “key” in the database.

Parameters

• key (bytes) – Name of the entry to merge

• value (bytes) – Data to merge

delete(key)
If the database contains a mapping for “key”, erase it. Else do nothing.

Parameters key (bytes) – Key to erase

clear()
Clear all updates buffered in this batch.

Note: Don’t call this method if there is an outstanding iterator. Calling rocksdb.WriteBatch.
clear() with outstanding iterator, leads to SEGFAULT.

data()
Retrieve the serialized version of this batch.

Return type bytes

30 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

count()
Returns the number of updates in the batch

Return type int

__iter__()
Returns an iterator over the current contents of the write batch.

If you add new items to the batch, they are not visible for this iterator. Create a new one if you need to see
them.

Note: Calling rocksdb.WriteBatch.clear() on the write batch invalidates the iterator. Using a
iterator where its corresponding write batch has been cleared, leads to SEGFAULT.

Return type rocksdb.WriteBatchIterator

WriteBatchIterator

class rocksdb.WriteBatchIterator

__iter__()
Returns self.

__next__()
Returns the next item inside the corresponding write batch. The return value is a tuple of always size
three.

First item (Name of the operation):

• "Put"

• "Merge"

• "Delete"

Second item (key): Key for this operation.

Third item (value): The value for this operation. Empty for "Delete".

Repair DB

repair_db(db_name, opts)

Parameters

• db_name (unicode) – Name of the database to open

• opts (rocksdb.Options) – Options for this specific database

If a DB cannot be opened, you may attempt to call this method to resurrect as much of the contents of the
database as possible. Some data may be lost, so be careful when calling this function on a database that contains
important information.

1.3. Python driver for RocksDB 31

python-rocksdb Documentation, Release 0.6.7

Errors

exception rocksdb.errors.NotFound

exception rocksdb.errors.Corruption

exception rocksdb.errors.NotSupported

exception rocksdb.errors.InvalidArgument

exception rocksdb.errors.RocksIOError

exception rocksdb.errors.MergeInProgress

exception rocksdb.errors.Incomplete

1.3.3 Interfaces

Comparator

class rocksdb.interfaces.Comparator
A Comparator object provides a total order across slices that are used as keys in an sstable or a database.
A Comparator implementation must be thread-safe since rocksdb may invoke its methods concurrently from
multiple threads.

compare(a, b)
Three-way comparison.

Parameters

• a (bytes) – First field to compare

• b (bytes) – Second field to compare

Returns

• -1 if a < b

• 0 if a == b

• 1 if a > b

Return type int

name()
The name of the comparator. Used to check for comparator mismatches (i.e., a DB created with one
comparator is accessed using a different comparator).

The client of this package should switch to a new name whenever the comparator implementation changes
in a way that will cause the relative ordering of any two keys to change.

Names starting with “rocksdb.” are reserved and should not be used by any clients of this package.

Return type bytes

Merge Operator

Essentially, a MergeOperator specifies the SEMANTICS of a merge, which only client knows. It could
be numeric addition, list append, string concatenation, edit data structure, whatever. The library, on
the other hand, is concerned with the exercise of this interface, at the right time (during get, iteration,
compaction. . .)

32 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

To use merge, the client needs to provide an object implementing one of the following interfaces:

• AssociativeMergeOperator - for most simple semantics (always take two values, and merge them
into one value, which is then put back into rocksdb). numeric addition and string concatenation are
examples.

• MergeOperator - the generic class for all the more complex operations. One method (FullMerge) to
merge a Put/Delete value with a merge operand. Another method (PartialMerge) that merges two
operands together. This is especially useful if your key values have a complex structure but you
would still like to support client-specific incremental updates.

AssociativeMergeOperator is simpler to implement. MergeOperator is simply more powerful.

See this page for more details https://github.com/facebook/rocksdb/wiki/Merge-Operator

AssociativeMergeOperator

class rocksdb.interfaces.AssociativeMergeOperator

merge(key, existing_value, value)
Gives the client a way to express the read -> modify -> write semantics

Parameters

• key (bytes) – The key that’s associated with this merge operation

• existing_value (bytes) – The current value in the db. None indicates the key
does not exist before this op

• value (bytes) – The value to update/merge the existing_value with

Returns True and the new value on success. All values passed in will be client-specific
values. So if this method returns false, it is because client specified bad data or there was
internal corruption. The client should assume that this will be treated as an error by the
library.

Return type (bool, bytes)

name()
The name of the MergeOperator. Used to check for MergeOperator mismatches. For example a DB
created with one MergeOperator is accessed using a different MergeOperator.

Return type bytes

MergeOperator

class rocksdb.interfaces.MergeOperator

full_merge(key, existing_value, operand_list)
Gives the client a way to express the read -> modify -> write semantics

Parameters

• key (bytes) – The key that’s associated with this merge operation. Client could
multiplex the merge operator based on it if the key space is partitioned and differ-
ent subspaces refer to different types of data which have different merge operation
semantics

1.3. Python driver for RocksDB 33

https://github.com/facebook/rocksdb/wiki/Merge-Operator

python-rocksdb Documentation, Release 0.6.7

• existing_value (bytes) – The current value in the db. None indicates the key
does not exist before this op

• operand_list (list of bytes) – The sequence of merge operations to apply.

Returns True and the new value on success. All values passed in will be client-specific
values. So if this method returns false, it is because client specified bad data or there was
internal corruption. The client should assume that this will be treated as an error by the
library.

Return type (bool, bytes)

partial_merge(key, left_operand, right_operand)
This function performs merge(left_op, right_op) when both the operands are themselves merge op-
eration types that you would have passed to a DB::Merge() call in the same order. For example
DB::Merge(key,left_op), followed by DB::Merge(key,right_op)).

PartialMerge should combine them into a single merge operation that is returned together with True
This new value should be constructed such that a call to DB::Merge(key, new_value) would yield the
same result as a call to DB::Merge(key, left_op) followed by DB::Merge(key, right_op).

If it is impossible or infeasible to combine the two operations, return (False, None) The library
will internally keep track of the operations, and apply them in the correct order once a base-value (a
Put/Delete/End-of-Database) is seen.

Parameters

• key (bytes) – the key that is associated with this merge operation.

• left_operand (bytes) – First operand to merge

• right_operand (bytes) – Second operand to merge

Return type (bool, bytes)

Note: Presently there is no way to differentiate between error/corruption and simply “return false”. For
now, the client should simply return false in any case it cannot perform partial-merge, regardless of reason.
If there is corruption in the data, handle it in the FullMerge() function, and return false there.

name()
The name of the MergeOperator. Used to check for MergeOperator mismatches. For example a DB
created with one MergeOperator is accessed using a different MergeOperator.

Return type bytes

FilterPolicy

class rocksdb.interfaces.FilterPolicy

create_filter(keys)
Create a bytestring which can act as a filter for keys.

Parameters keys (list of bytes) – list of keys (potentially with duplicates) that are
ordered according to the user supplied comparator.

Returns A filter that summarizes keys

Return type bytes

34 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

key_may_match(key, filter)
Check if the key is maybe in the filter.

Parameters

• key (bytes) – Key for a single entry inside the database

• filter (bytes) – Contains the data returned by a preceding call to create_filter on
this class

Returns This method must return True if the key was in the list of keys passed to cre-
ate_filter(). This method may return True or False if the key was not on the list, but it
should aim to return False with a high probability.

Return type bool

name()
Return the name of this policy. Note that if the filter encoding changes in an incompatible way, the name
returned by this method must be changed. Otherwise, old incompatible filters may be passed to methods
of this type.

Return type bytes

SliceTransform

class rocksdb.interfaces.SliceTransform
SliceTransform is currently used to implement the ‘prefix-API’ of rocksdb. https://github.com/facebook/
rocksdb/wiki/Proposal-for-prefix-API

transform(src)

Parameters src (bytes) – Full key to extract the prefix from.

Returns A tuple of two interges (offset, size). Where the first integer is the offset
within the src and the second the size of the prefix after the offset. Which means the
prefix is generted by src[offset:offset+size]

Return type (int, int)

in_domain(src)
Decide if a prefix can be extraced from src. Only if this method returns True transform() will be
called.

Parameters src (bytes) – Full key to check.

Return type bool

in_range(prefix)
Checks if prefix is a valid prefix

Parameters prefix (bytes) – Prefix to check.

Returns True if prefix is a valid prefix.

Return type bool

name()
Return the name of this transformation.

Return type bytes

1.3. Python driver for RocksDB 35

https://github.com/facebook/rocksdb/wiki/Proposal-for-prefix-API
https://github.com/facebook/rocksdb/wiki/Proposal-for-prefix-API

python-rocksdb Documentation, Release 0.6.7

1.3.4 Backup and Restore

BackupEngine

class rocksdb.BackupEngine

__init__(backup_dir)
Creates a object to manage backup of a single database.

Parameters backup_dir (unicode) – Where to keep the backup files. Has to be different
than db.db_name. For example db.db_name + ‘/backups’.

create_backup(db, flush_before_backup=False)
Triggers the creation of a backup.

Parameters

• db (rocksdb.DB) – Database object to backup.

• flush_before_backup (bool) – If True the current memtable is flushed.

restore_backup(backup_id, db_dir, wal_dir)
Restores the backup from the given id.

Parameters

• backup_id (int) – id of the backup to restore.

• db_dir (unicode) – Target directory to restore backup.

• wal_dir (unicode) – Target directory to restore backuped WAL files.

restore_latest_backup(db_dir, wal_dir)
Restores the latest backup.

Parameters

• db_dir (unicode) – see restore_backup()

• wal_dir (unicode) – see restore_backup()

stop_backup()
Can be called from another thread to stop the current backup process.

purge_old_backups(num_backups_to_keep)
Deletes all backups (oldest first) until “num_backups_to_keep” are left.

Parameters num_backups_to_keep (int) – Number of backupfiles to keep.

delete_backup(backup_id)

Parameters backup_id (int) – Delete the backup with the given id.

get_backup_info()
Returns information about all backups.

It returns a list of dict’s where each dict as the following keys.

backup_id (int): id of this backup.

timestamp (int): Seconds since epoch, when the backup was created.

size (int): Size in bytes of the backup.

36 Chapter 1. Overview

python-rocksdb Documentation, Release 0.6.7

1.4 Changelog

1.4.1 Version 0.5

1.4.2 Version 0.4

This version works with RocksDB v3.12.

• Added repair_db().

• Added rocksdb.Options.row_cache()

• Publish to pypi.

Backward Incompatible Changes:

• Changed API of rocksdb.DB.compact_range().

– Only allow keyword arguments.

– Changed reduce_level to change_level.

– Add new argument called bottommost_level_compaction.

1.4.3 Version 0.3

This version works with RocksDB version v3.11.

Backward Incompatible Changes:

Prefix Seeks:

According to this page https://github.com/facebook/rocksdb/wiki/Prefix-Seek-API-Changes, all the prefix related pa-
rameters on ReadOptions are removed. Rocksdb realizes now if Options.prefix_extractor is set and
uses then prefix-seeks automatically. This means the following changes on pyrocksdb.

• DB.iterkeys, DB.itervalues, DB.iteritems have no prefix parameter anymore.

• DB.get, DB.multi_get, DB.key_may_exist, DB.iterkeys, DB.itervalues, DB.iteritems have no prefix_seek
parameter anymore.

Which means all the iterators walk now always to the end of the database. So if you need to stay within a prefix, write
your own code to ensure that. For DB.iterkeys and DB.iteritems itertools.takewhile is a possible solution.

from itertools import takewhile

it = self.db.iterkeys()
it.seek(b'00002')
print list(takewhile(lambda key: key.startswith(b'00002'), it))

it = self.db.iteritems()
it.seek(b'00002')
print dict(takewhile(lambda item: item[0].startswith(b'00002'), it))

SST Table Builders:

• Removed NewTotalOrderPlainTableFactory, because rocksdb drops it too.

1.4. Changelog 37

https://github.com/facebook/rocksdb/wiki/Prefix-Seek-API-Changes

python-rocksdb Documentation, Release 0.6.7

Changed Options:

In newer versions of rocksdb a bunch of options were moved or removed.

• Rename bloom_bits_per_prefix of rocksdb.PlainTableFactory to bloom_bits_per_key

• Removed Options.db_stats_log_interval.

• Removed Options.disable_seek_compaction

• Moved Options.no_block_cache to BlockBasedTableFactory

• Moved Options.block_size to BlockBasedTableFactory

• Moved Options.block_size_deviation to BlockBasedTableFactory

• Moved Options.block_restart_interval to BlockBasedTableFactory

• Moved Options.whole_key_filtering to BlockBasedTableFactory

• Removed Options.table_cache_remove_scan_count_limit

• Removed rm_scan_count_limit from LRUCache

New:

• Make CompactRange available: rocksdb.DB.compact_range()

• Add init options to rocksdb.BlockBasedTableFactory

• Add more option to rocksdb.PlainTableFactory

• Add rocksdb.WriteBatchIterator

• add rocksdb.CompressionType.lz4_compression

• add rocksdb.CompressionType.lz4hc_compression

1.4.4 Version 0.2

This version works with RocksDB version 2.8.fb. Now you have access to the more advanced options of rocksdb. Like
changing the memtable or SST representation. It is also possible now to enable Universal Style Compaction.

• Fixed issue 3. Which fixed the change of prefix_extractor from raw-pointer to smart-pointer.

• Support the new rocksdb.Options.verify_checksums_in_compaction option.

• Add rocksdb.Options.table_factory option. So you could use the new ‘PlainTableFactories’ which
are optimized for in-memory-databases.

– https://github.com/facebook/rocksdb/wiki/PlainTable-Format

– https://github.com/facebook/rocksdb/wiki/How-to-persist-in-memory-RocksDB-database%3F

• Add rocksdb.Options.memtable_factory option.

• Add options rocksdb.Options.compaction_style and rocksdb.Options.
compaction_options_universal to change the compaction style.

• Update documentation to the new default values

– allow_mmap_reads=true

– allow_mmap_writes=false

– max_background_flushes=1

38 Chapter 1. Overview

https://github.com/stephan-hof/pyrocksdb/pull/3
https://github.com/facebook/rocksdb/wiki/PlainTable-Format
https://github.com/facebook/rocksdb/wiki/How-to-persist-in-memory-RocksDB-database%3F

python-rocksdb Documentation, Release 0.6.7

– max_open_files=5000

– paranoid_checks=true

– disable_seek_compaction=true

– level0_stop_writes_trigger=24

– level0_slowdown_writes_trigger=20

• Document new property names for rocksdb.DB.get_property().

1.4.5 Version 0.1

Initial version. Works with rocksdb version 2.7.fb.

1.4. Changelog 39

python-rocksdb Documentation, Release 0.6.7

40 Chapter 1. Overview

CHAPTER 2

Contributing

Source can be found on github. Feel free to fork and send pull-requests or create issues on the github issue tracker

41

https://github.com/stephan-hof/pyrocksdb
https://github.com/stephan-hof/pyrocksdb/issues

python-rocksdb Documentation, Release 0.6.7

42 Chapter 2. Contributing

CHAPTER 3

RoadMap/TODO

No plans so far. Please submit wishes to the github issues.

43

python-rocksdb Documentation, Release 0.6.7

44 Chapter 3. RoadMap/TODO

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

45

python-rocksdb Documentation, Release 0.6.7

46 Chapter 4. Indices and tables

Python Module Index

r
rocksdb, 9

47

python-rocksdb Documentation, Release 0.6.7

48 Python Module Index

Index

Symbols
__init__() (rocksdb.BackupEngine method), 36
__init__() (rocksdb.BloomFilterPolicy method), 22
__init__() (rocksdb.DB method), 25
__init__() (rocksdb.HashLinkListMemtableFactory

method), 25
__init__() (rocksdb.HashSkipListMemtableFactory

method), 24
__init__() (rocksdb.LRUCache method), 22
__init__() (rocksdb.Options method), 9
__init__() (rocksdb.PlainTableFactory method), 23
__init__() (rocksdb.SkipListMemtableFactory

method), 24
__init__() (rocksdb.VectorMemtableFactory

method), 24
__init__() (rocksdb.WriteBatch method), 30
__iter__() (rocksdb.BaseIterator method), 29
__iter__() (rocksdb.WriteBatch method), 31
__iter__() (rocksdb.WriteBatchIterator method), 31
__next__() (rocksdb.BaseIterator method), 29
__next__() (rocksdb.WriteBatchIterator method), 31
__reversed__() (rocksdb.BaseIterator method), 29

A
advise_random_on_open (rocksdb.Options at-

tribute), 17
allow_mmap_reads (rocksdb.Options attribute), 17
allow_mmap_writes (rocksdb.Options attribute), 17
arena_block_size (rocksdb.Options attribute), 16

B
bytes_per_sync (rocksdb.Options attribute), 18
bzip2_compression (rocksdb.CompressionType at-

tribute), 21

C
clear() (rocksdb.WriteBatch method), 30
compact_range() (rocksdb.DB method), 28

compaction_options_universal
(rocksdb.Options attribute), 18

compaction_pri (rocksdb.Options attribute), 18
compaction_style (rocksdb.Options attribute), 18
comparator (rocksdb.Options attribute), 20
compare() (rocksdb.interfaces.Comparator method),

32
compression (rocksdb.Options attribute), 11
count() (rocksdb.WriteBatch method), 30
create_backup() (rocksdb.BackupEngine method),

36
create_filter() (rocksdb.interfaces.FilterPolicy

method), 34
create_if_missing (rocksdb.Options attribute), 10

D
data() (rocksdb.WriteBatch method), 30
db_log_dir (rocksdb.Options attribute), 13
delete() (rocksdb.DB method), 25
delete() (rocksdb.WriteBatch method), 30
delete_backup() (rocksdb.BackupEngine method),

36
delete_obsolete_files_period_micros

(rocksdb.Options attribute), 14
disable_auto_compactions (rocksdb.Options at-

tribute), 16
disable_compression (rocksdb.CompressionType

attribute), 21

E
error_if_exists (rocksdb.Options attribute), 10

F
full_merge() (rocksdb.interfaces.MergeOperator

method), 33

G
get() (rocksdb.DB method), 26

49

python-rocksdb Documentation, Release 0.6.7

get_backup_info() (rocksdb.BackupEngine
method), 36

get_live_files_metadata() (rocksdb.DB
method), 28

get_property() (rocksdb.DB method), 28

H
hard_rate_limit (rocksdb.Options attribute), 15

I
in_domain() (rocksdb.interfaces.SliceTransform

method), 35
in_range() (rocksdb.interfaces.SliceTransform

method), 35
inplace_update_num_locks (rocksdb.Options at-

tribute), 20
inplace_update_support (rocksdb.Options

attribute), 19
is_fd_close_on_exec (rocksdb.Options attribute),

17
iteritems() (rocksdb.DB method), 27
iterkeys() (rocksdb.DB method), 27
itervalues() (rocksdb.DB method), 27

K
kByCompensatedSize (rocksdb.CompactionPri at-

tribute), 21
keep_log_file_num (rocksdb.Options attribute), 15
key_may_exist() (rocksdb.DB method), 27
key_may_match() (rocksdb.interfaces.FilterPolicy

method), 34
kMinOverlappingRatio (rocksdb.CompactionPri

attribute), 21
kOldestLargestSeqFirst

(rocksdb.CompactionPri attribute), 21
kOldestSmallestSeqFirst

(rocksdb.CompactionPri attribute), 21

L
level0_file_num_compaction_trigger

(rocksdb.Options attribute), 11
level0_slowdown_writes_trigger

(rocksdb.Options attribute), 11
level0_stop_writes_trigger (rocksdb.Options

attribute), 12
log_file_time_to_roll (rocksdb.Options at-

tribute), 14
lz4_compression (rocksdb.CompressionType at-

tribute), 21
lz4hc_compression (rocksdb.CompressionType at-

tribute), 21

M
manifest_preallocation_size

(rocksdb.Options attribute), 16
max_background_compactions (rocksdb.Options

attribute), 14
max_background_flushes (rocksdb.Options

attribute), 14
max_bytes_for_level_base (rocksdb.Options at-

tribute), 12
max_bytes_for_level_multiplier

(rocksdb.Options attribute), 13
max_bytes_for_level_multiplier_additional

(rocksdb.Options attribute), 13
max_compaction_bytes (rocksdb.Options at-

tribute), 13
max_log_file_size (rocksdb.Options attribute), 14
max_manifest_file_size (rocksdb.Options

attribute), 15
max_mem_compaction_level (rocksdb.Options at-

tribute), 12
max_open_files (rocksdb.Options attribute), 11
max_sequential_skip_in_iterations

(rocksdb.Options attribute), 19
max_write_buffer_number (rocksdb.Options at-

tribute), 10
memtable_factory (rocksdb.Options attribute), 19
merge() (rocksdb.DB method), 26
merge() (rocksdb.interfaces.AssociativeMergeOperator

method), 33
merge() (rocksdb.WriteBatch method), 30
merge_operator (rocksdb.Options attribute), 20
min_write_buffer_number_to_merge

(rocksdb.Options attribute), 11
multi_get() (rocksdb.DB method), 26

N
name() (rocksdb.interfaces.AssociativeMergeOperator

method), 33
name() (rocksdb.interfaces.Comparator method), 32
name() (rocksdb.interfaces.FilterPolicy method), 35
name() (rocksdb.interfaces.MergeOperator method), 34
name() (rocksdb.interfaces.SliceTransform method), 35
no_compression (rocksdb.CompressionType at-

tribute), 21
num_levels (rocksdb.Options attribute), 11

O
options (rocksdb.DB attribute), 29

P
paranoid_checks (rocksdb.Options attribute), 10
partial_merge() (rocksdb.interfaces.MergeOperator

method), 34

50 Index

python-rocksdb Documentation, Release 0.6.7

prefix_extractor (rocksdb.Options attribute), 20
purge_old_backups() (rocksdb.BackupEngine

method), 36
purge_redundant_kvs_while_flush

(rocksdb.Options attribute), 16
put() (rocksdb.DB method), 25
put() (rocksdb.WriteBatch method), 30

R
rate_limit_delay_max_milliseconds

(rocksdb.Options attribute), 15
repair_db() (built-in function), 31
restore_backup() (rocksdb.BackupEngine

method), 36
restore_latest_backup()

(rocksdb.BackupEngine method), 36
rocksdb (module), 9
rocksdb.BackupEngine (built-in class), 36
rocksdb.BaseIterator (built-in class), 29
rocksdb.BlockBasedTableFactory (built-in

class), 22
rocksdb.BloomFilterPolicy (built-in class), 22
rocksdb.BytewiseComparator (built-in class),

21
rocksdb.CompactionPri (built-in class), 21
rocksdb.CompressionType (built-in class), 21
rocksdb.DB (built-in class), 25
rocksdb.errors.Corruption, 32
rocksdb.errors.Incomplete, 32
rocksdb.errors.InvalidArgument, 32
rocksdb.errors.MergeInProgress, 32
rocksdb.errors.NotFound, 32
rocksdb.errors.NotSupported, 32
rocksdb.errors.RocksIOError, 32
rocksdb.HashLinkListMemtableFactory

(built-in class), 25
rocksdb.HashSkipListMemtableFactory

(built-in class), 24
rocksdb.interfaces.AssociativeMergeOperator

(built-in class), 33
rocksdb.interfaces.Comparator (built-in

class), 32
rocksdb.interfaces.FilterPolicy (built-in

class), 34
rocksdb.interfaces.MergeOperator (built-in

class), 33
rocksdb.interfaces.SliceTransform (built-

in class), 35
rocksdb.LRUCache (built-in class), 22
rocksdb.Options (built-in class), 9
rocksdb.PlainTableFactory (built-in class), 23
rocksdb.SkipListMemtableFactory (built-in

class), 24
rocksdb.Snapshot (built-in class), 30

rocksdb.VectorMemtableFactory (built-in
class), 24

rocksdb.WriteBatch (built-in class), 30
rocksdb.WriteBatchIterator (built-in class),

31
row_cache (rocksdb.Options attribute), 21

S
seek() (rocksdb.BaseIterator method), 29
seek_to_first() (rocksdb.BaseIterator method), 29
seek_to_last() (rocksdb.BaseIterator method), 29
skip_log_error_on_recovery (rocksdb.Options

attribute), 17
snappy_compression (rocksdb.CompressionType

attribute), 21
snapshot() (rocksdb.DB method), 27
soft_rate_limit (rocksdb.Options attribute), 15
stats_dump_period_sec (rocksdb.Options at-

tribute), 17
stop_backup() (rocksdb.BackupEngine method), 36

T
table_cache_numshardbits (rocksdb.Options at-

tribute), 15
table_factory (rocksdb.Options attribute), 19
target_file_size_base (rocksdb.Options at-

tribute), 12
target_file_size_multiplier

(rocksdb.Options attribute), 12
transform() (rocksdb.interfaces.SliceTransform

method), 35

U
use_adaptive_mutex (rocksdb.Options attribute),

17
use_fsync (rocksdb.Options attribute), 13

W
wal_dir (rocksdb.Options attribute), 14
write() (rocksdb.DB method), 26
write_buffer_size (rocksdb.Options attribute), 10

X
xpress_compression (rocksdb.CompressionType

attribute), 21

Z
zlib_compression (rocksdb.CompressionType at-

tribute), 21
zstd_compression (rocksdb.CompressionType at-

tribute), 21
zstdnotfinal_compression

(rocksdb.CompressionType attribute), 21

Index 51

	Overview
	Installing
	Basic Usage of python-rocksdb
	Python driver for RocksDB
	Changelog

	Contributing
	RoadMap/TODO
	Indices and tables
	Python Module Index

